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CIP Working #178 

PROTUCOL ANALYSIS AS A TASK  FUR ARTIFICIAL  INTELLIGENCE 

D.  A.   Waterman and A.   Nowcll 

Departmonts of  Psychology and Computer Science 
Carnegie-Mellon University 
Pittsburgh,   Pennsylvania 

Abstract 

We arc attempting to automate protocol 
analysis, which is a form of data analysis in 
psychology for inferring the  information proc- 
esses used by a human from his verbal behavior 
while   solving a problem.    The paper discusses 
protocol analysis as a task in artificial intel- 
ligence.    The discussion is based on  (but 
broader than)  our current program,   PAS-I, which 
creates a description of a  subject's cV.dnging 
knowledge  state  from his verbal behavior. 

I. Introduction 

A form of data analysis, called protocol 
analysis, has been much used in recent work in 
the psycnology of thinking and problem solving. 
The subject talks while attempting to solve a 
problem, his verbalizations arc transcribed, 
and the underlying information processes arc 
inferred from their content.  Examples of tasks 
subjected to protocol analysis are various 
puzzles, such as Missionaries and Cannibals 
(A) or ciyptarithmetic (12, 13, 17, 26) elemen- 
tary logic problems (14, 15), chess (6, 7, 16), 
binary-choice sequence prediction (9), geometry 
proofs (4), word problems in elementary algebra 
(20), concept identification for the induction 
of various logical and sequential concepts (19), 
and various understanding tasks (21). 

Our long-term goal is to automate protocol 
analysis.  Careful protocol analysis is time- 
consuming, and extensive analyses requires 
automatization. A considerable increase in 
objectivity may occur, since the analysis will 
be accomplished with determinate rules, rather 
than by a human with indeterminate intellectual 
powers.  Finally, an explicit t^oresentation 
may be possible of the evidence provided by a 
protocol for or against a given theory of human 
problem solving. 

Two side interests are served by this 
project.  First, the task to be automated -- 
the analysis of protocols -- requires an 
artificial intelligence program, since the 
functions involved include extraction of meaning, 
inference from data, and induction of now sets 
of rules.  Second, since understanding the con- 
tent of freely produced natural language is cen- 
tral to protocol analysis, the results may be of 
interest to those concerned with semantics. 

We currently have running an initial 
system for automatic protocol analysis, called 
Protocol Analysis System I (PAS-I), designed 
to handle protocols for the task of crypt- 
arithmetic. A complete description of the 
program with examination of its behavior in 
some detail is the subject of a companion paper 
to be presented to a psychological audience 
(25). The present paper examines protocol 
analysis as a task for artificial intelligence 
— the essential problems, the task represen- 
tat jns,and the methods.  It draws extensively 
on our early experience with PAS-I, but goes 
beyond it at several points. 

II.  Methodological Preliminaries 

Automating protocol analysis is a long- 
term effort involving many difficulties.  This 
puts a premium on adopting a sensible strategy 
for carrying out the project. We describe here 
some of our cardinal tenets. 

First, the system is primarily for our 
own use. We ourselves are involved in study- 
ing cognitive processes and analyzing protocols. 
We expect others to use automatic protocol 
analysis techniques when they arc developed; 
but adaptation to the needs of others Is a 
postponable task. 

Second, initial attempts at a difficult 
task should focus on a specific variant.  Gen- 
erality can come later. Thus, we have picked 
a specific problem solving situation, crypt- 
arithmetic, and ignored all others, such as 
chess, logic, concept identification, etc.  The 
selection of cryptarithmetic Is based on the 
relatively sophisticated and successful develop» 
ment of a particular style of protocol analysis 
for this task in prior work.  Success with 
cryptarithmetic could lead to rapid scientific 
gains in terms of questions already posed In 
this area that cannot be explored without 
extensive analysis of many protocols. Conse- 
quently, this specialization may provide an 
early justification of the work, even without 
solving any of the problems of generalization 
that clearly lie just beyond. 

Third, developing complex prograns is an 
experimental activity. The touted procedure 
of careful planning, followed by complete 
specifications prior to coding, is exactly the 



wrong way to proceed.     Iwory component of  the 
.system will   be   redesigned  and   receded  not  once 
but  many  times.     The   important   step   is   to  get 
a  version of  the  program written and  running,   Co 
obtain  feedback   for  the   next   iteration.     Thus, 
the  current   set  of  design  decisions   in   I'AS-l  do 
not   represent  concei'tual  conunitments  on  how  the 
task   should  be  done,   but   simply our current 
selection of  mechanisms   to   try.     This   system 
uses  SN0B0L4   for   the   linguistic   front  end  and 
LISP  for  the  analytical  back  end  --  clearly a 
temporary expedient. 

fourth,   complex  software   systems   should 
be  designed  and  built   by  very  few  people   (here 
two),   a   principle  much  quoted   in computer 
science.     For  artificial   intelligence   systems 
of  moderate   size,  we   think   this  principle   is 
actually   feasible.     It  does  appear  essential   for 
experimental  programming. 

Fifth,   one   should aim at   fall  automatiza- 
tion and   not  at   some  opti.iial  man-machine 
symbiotic   system,  even  though  the   latter  is  the 
desired  goal.     Selection of  a  man-machine   system 
as the  top-level goal  Invariably puts  strong 
emphases on  the  division  of   labor  between man 
and machine  and on  the   Hardware  and  software 
for  communication,     lioth of   these  aspects   seem 
secondary in  importance,   especially in a   long- 
term development.     Moreover,   posing  the  design 
problem as  the optimal  division of   labor  encour- 
ages  atultudes   like  "the  man  should  do what 
requires creativity and  intelligence;   the 
machine   should  do what   requires  drudgery and 
repetitive-  calculation."    These  distort   the 
design and  are  ultimately  se If-limiting  in  terms 
of  preconceived  notions of   the  powers  and   limi- 
tations  of  both  computers  and men.     We  prefer  to 
devote  our  efforts  to automating  the  central 
intellectual   functions  involved   in  protocol 
analysis.     Adaptation  to  an  appropriate  man- 
machine   system  is   then a   secondary  effort. 

III.     Framing   the   Problem 

Protocol  analysis,   as   it  currently  stands, 
is  an  informal  art,  where   each   Investigator  uses 
materials   In ways   that   suit  his  needs.     The work 
in cryptarithroetie   (13,   17)  constitutes a 
refined   form of   protocol  analysis,   involving a 
definite   scries  of  data  analytical   steps  and 
considerable   detail  of   the   verbal  utterances. 
We   follow  the   general   scheme  of  this  analysis, 
though  it  constitutes a   substantial  narrow'.ng 
of   the   task. 

The  experimental   situation  is   fixed.     The 
subject   is  given a  problem by means of   instruc- 
tions  as   shown  in  Figure   I.     A  tape   recording 
is made of  his  utterances  throughout   the 
session.     Note   is  taken of  each act  of writing 
and  its  time,   so  coordination is  possible with 

the  speech.    This audio  tape constitutes the 
primary data  to  be analyzed.     Figure  2 gives 
a transcription of the  tape  for the initial 
part of a  session analyzed previously (13) 
(called S3,s   session). 

The  final output of an analysis is a 
description of  the  subject as an information 
processing  system.     It consists of two  struc- 
tures.     The  first  structure  Is  the problem 
space,  which  specifics the kinds of knowledge 
the  subject can have about  the  task -- what he 
can come  to know.    This can be done  in a 
grammar-like way by giving a  language.    Any 
expression  In this  language represents a 
possible  state of knowledge of  the  subject, 
hence a possible point  in the problem space. 
Included in the  notion of a problem space  are 
the means  to obtain now information from old: 
a  finite  set of operators which take a  state 
of knowledge as input and produce a new state 
of knowledge as output.    These operators are 
incremental,   adding or modifying only a   small 
part of the  total knowledge state.     Figure 3 
shows a  simplified version of  the problem 
space for S3,  using BNF.* 

At the top of Figure 3 are  the entities 
about which  something can be knorn.     Below this 
are  seven expressions,  e.g.,   (EQ D 5)  says the 
subject knows  that D is  5t    The knowledfe"  state 
is the conjunction of a number of such expres- 
sions.    At the bottom are the  four operators 
by which the  subject can produce new knowledge. 

The  second structure is a pioduction 
system (siml lar to  Post or Floyd productions), 
consisting of an ordered set of productions. 
Each production consists of a condition part 
and an action part, conventionally written ast 

condition -> action , 

The condition part consists of tests that can 
be applied  to  states of knowledge,  as given by 
tho problem space.    The action part consists of 
a  sequence of one or more operators.    A produc- 
tion system can be applied to a  state of know- 
lodge by executing the action of the  first 
production  (in an ordered  list) whose condition 
is  true of  the knowledge  state.""'    A production 

The notation in Figures 3-6 has been changed 
from the original paper (13) to conform with 
that used  In PAS-I. 

If the action is a  sequence of N operators 
then a corresponding trajectory through N 
nodes of problem space  is generated by a 
single production.    Without  loss of gener- 
ality actions could be  limited to a  single 
operator. 
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system forms a complutc process if it is 
itcratively applied to each new knowledge state 
that is generated by its actions.  Figure 4 
gives a simplified illustrative fragment of the 
production system for S3.  Production PI, for 
instance, has a condition that is satisfied by 
expressions such as (EQ R 7) or (AliQ LI).  If 
the condition is satisfied, then two operators 
are applied.  The first, PC, selects a column to 
work on; the second, PC, processes that column 
to obtain new knowledge.  The production system 
requires some additional operators, not in the 
problem space of figure 3.  These operators (FC 
and PL) obtain the operands for the main problem 
space operators, rather than obtaining new know- 
ledge about the task. 

Besides those two static structures, which 
constitute the model of the subject, the analy- 
sis also provides two dynamic representations of 
the subject's behavior.  The first, called the 
Problem Behavior Graph (PBG), describes the 
trajectory of the subject through the problem 
space.  Each node of the graph represents a 
particular state of knowledge and each branch 
represents the operator that was applied at that 
state.  Since thi. subject may return to Shtf same 
state of knowledge at different times, the graph 
is conventionally drawn with a distinct node for 
ea^h distinct visit to a knowledge state. Thus, 
conventionally time runs acrosr, the page from 
left to right and then down.  Figure 5 shows a 
simplified problem behavior graph for the initial 
part of the session of S3.  The knowledge states 
are represented by the nodes (square boxes) and 
the application of the operators by the branches. 
Comparison with Figure 2 will show that some 
actions are not roprcscited explicitly, e.g., 
writing results (at lines 8, 9, 12, and 13) and 
obtaining a letter to work on (lines 14-19). 
S3 processes column 2 twice (lines 22 and 25) 
and this is shown as a back-up in the PBG. 

The second dynamic representation is the 
trace of the behavior of the production svstem, 
which shows the sequence of knowledge stales that 
the production system generates in attempting to 
model the subject's behavior.  Figure 6 shows 
the initial part of the trace from the illustra- 
tive production system of Figure 5.  Both the 
production and the operator being evoked are 
given at the left. The next line below gives 
the output, which can be an Intermediate result 
(such as the column found by FC) and a new 
addition to the knowledge state. The trace does 
not carry through the back-up of Figure 5, since 
additional productions are required beyond the 
fragment in Figure 4 to recognize the need for 
repeating and to accomplish it. 

These two representations, the trace and 
the PBG, provide the primary means ot assessing 
the adequacy of the model of the subject, as 
giveii by the problem space and the production 

system.  Various measures can be taken on them 
to summarize the degree of correspondence and 
to pinpoint the aspects that are especially 
well accounted for or that create important 
difficuIties, 

As stated, these constructs may seem 
arbitrarily imposed.  In fact, they derive from 
a particular theory of human problem solving. 
This theory has been expounded at length in 
Newell and Simon (17)" and there is no need 
to rcdescribc it here.  We will take these four 
structures, illustrated in Figures 3-6, as the 
required outputs of a protocol analysis. 

The boundary conditions of the task of 
protocol analysis are now fixed, with the audio 
l;ape on one end and the four structures that 
make up the psychological model at the other 
end. Within this domain, however, arc many 
subtasks: description, prediction, induction, 
evaluation, etc.  Each offers its own challenge 
as an effort in artificial Intelligence, though 
all are ultimately intertwined. 

The diversity of subtasks within protocol 
analysis is compounded by the necessity of 
several intermediate representations between 
the tape and the psychological models. Current 
knowledge is simply not organized for direct 
transformation between the two.  In fact, to 
proceed further in delineating protocol analy- 
sis we must propose a concrete set of these 
intermediate representations. Figure 7 shows 
our current set. This is a critical step, for 
It fixes much of the analysis. These represen- 
tations are determined primarily by the form of 
current knowledge. Either we conform to the 
representations in which a given source (e.g., 
linguistic knowledge) is expressed or we cannot 
use the knowledge. Conceivaoly knowledge could 
be rewoiked into some new representation, but 
this is quite difficult. Thus, we settle for 
conventional representations and a conventional 
decomposition of the task. 

The first intermediate representations 
are linguistic ones, involving phonemes, words, 
phrases,and sentences. The two types of 
linguistic representations currently employed 
are shown in Figure 7, The lexical represen- 
tation consists of the stream of words uttered 
by the subject, including word fragments, 
prosodic features, timing information, and para- 
linguistic features.  It is the typical output 

The theory is an outgrowth of work over more 
than a decade (18).  For earlier versions of 
the theory as it will be used here, see (12, 
13, 16). Also a brief summary is included in 
the companion paper (2 5). 



produced  by a  human  Cranscriptionist   from the 
audio   tape   (see   figure   2).     The   second   Lin- 
guistic   representation  is   the   topic   represen- 
tation.     This   is  a   segmentation of   the   lexical 
representation  into  units  called   topic   segments, 
each concerned with a  single   task  topic.     In 
Figure   2  each  numbered   line   is  a   topic   segment. 
Other   linguistic   representations  are  possible 
(e.g.,   one   into   sentences  based on a  grammat- 
ical analysis).     Wo also  indicate  in Figure  7 
that   linguistic   rules are a  necessary source 
of knowledge  in order  to work with any of  the 
linguistic   representations of  behavior.    These 
rules  are   based  primarily on conventional 
linguistic knowledge   (as contained  in grammars 
and   lexicons),   but also have a component  that 
Is  idiosyncratic   to the  subject as well as one 
related  to conversational  rules. 

The next  representations are called 
semantic ones.    They hold  the  task-related 
meaning to  be extracted  from the   linguistic 
representations.     Thay consist  of  a   set of 
semantic  elements,   each of which makes  an 
assertion about   the  experimental   situation at 
some   time.    The elements  fall  into  two classes. 
The   first,   called  problem-space  elements, 
asserts  the occurreni:e of  some  basic  item in 
the  problem space,   eir.her knowledge  the  subject 
has   (called a  knowledge  clement)  or  the  occur- 
rence of an operator  (called an operator ele- 
ment) .     The   second cl.iss,   called  indicator 
elements,   asserts  relations   between  various 
elements  of  the  problem space,   e.g.,   that  a 
given knowledge   is  an  Input   to  a  given occur- 
rence  of  an operator.     Table   I  gives  brief 
descriptions of   the   semantic  elements currently 
in use.     For brevity, we will  drop  the word 
clement,  when  the  cuntext   is  clear,   and   simply 
refer  to knowledge and  operators. 

The   semantic  elements can be  arranged as 
functional  units  or  groups.     The  operator  group 
consists of  an operator along with   the  knowledge 
it  uses   (Its  input)  and  the   new  knowledge  it 
produces   (its output;.     The  protoi>oup  is  a 
conjecture of  an operator  group,   formed  at  an 
early   stage  in the  analysis. 

The   next   representations  are   the  ones of 
psychological   significance:   the   PUG   (problem 
behavior  graph)   and  the   trace  of   the   protocol 
system.     In  terms  of  the   semantic  elements   just 
defined,   the   nodes  of   the   PBG  are  operator 
groups.     Besides  the  two  behavioral   represen- 
tations   (the   PBG  and  the   trace)   there  are  two 
structural   representations:   the  problem space 
and   the   production  system.     It  can  be   seen  from 
Figure   7  that   the   problem  space   is  necessary  to 
define   the  elements  at   the   semantic   level. 

Finally, there are various representations 
which we have called assi'ssment representations. 
These  are  of   little   interest   here,   being 

primarily the results of measurement and statii- 
tical algorithms executed on the appropriate 
basic   structures  (PBG,   trace,  problem space and 
production system).* 

The various  subtasks encompassed by proto- 
col analysis can be  defined In terms of the 
representations in Figure  7.    They arise  from 
the many ways one can obtain information expres- 
sed in a particular representation,  when given 
the  information in other representations. 
Figure  8  lists  seven bnad categories of the 
subtasks,  which run the gamut of  recognizable 
scientific activity.    Additional variations can 
be defined easily. 

In the form in which they arise in proto- 
col analysis these  subtasks are all specific 
enough not  to have been dealt with directly in 
the artificial intelligence literature.    The 
iJork that  seems most related arc  those usually 
classified as inductive programs.    The work on 
Dendral  (5)  is by far the closest,   since It too 
deals with problems of Inference In an actual 
scientific context  (the  structure of organic 
molecules).    The Inductive problems usually 
dealt with  (8,   10,   11,   22) are taken In the main 
from formal puzzles.    They seem somewhat remote, 
though their general  lessons about creating 
spaces of hypotheses are quite relevant.    Work 
by Amarol   (1,   2,  3) on inducing functions from 
input-output tables is also relevant to one 
class of induction problems that arises here. 
More generally, Amarel has attempted to outline 
a class of theory formation problems which would 
cover a number of the  types described here. 
Work on  language,  not only linguistic r.heory and 
computational  linguistics,  but also work on 
semantics and on programs to understand lin- 
guistics.   Is also relevant. 

These  subtasks do not each require an 
independent approach and an Independent program, 
as they are defined with respect  to the  same 
representations and  sources of knowledge. 
Neither can they be developed all at once.    We 
have  started with the problem of behavior 
description.     PAS-I finds the PBG from the topic 
representation,  given the  linguistic rules and 
the problem space.    As will be  seen,,  this task 
is not merely "descriptive," but  Involves 
Inferring meaning from a  sequence of words.     It 
also  Involves inferring the current knowledge 
state of a human,   given that  some  past knowledge 
may have  been discarded. 

PAS-I constitutes our current  state of 
technical accomplishment,  and we will comment on 
it  in some detail.     However,   the purpose of the 

However,   representing the  total  evidence a 
protocol offers  for a given problem space  Is 
an unsolved representational problem. 



papet is to describe Che larger task of protocol 
analysis; PAS-I simply tackles one compoiunit 
task.  Thus, we will discuss the problem of 
describing behavior starting with the pure lexi- 
cal representation (i.e., before segmentation 
into topics). We will also discuss the descrip- 
tion of behavior beyond the PBG to the trace of 
the production system. 

The remaining behavior description problem 
is the recognition of speech — going from the 
audio tape to a lexical representation. 
Although we will not discuss the problem here, 
it must be included within the scope of protocol 
analysis.  The evidence from current work in 
speech recognition implies that the recognition 
process makes use of linguistic, semantic, and 
task information. Thus, significant feedback 
exists from the levels of analysis we do deal 
witii (Figure 7) to the input data associated 
with these levels. 

Of the other tasks in Figure 8 we will 
discuss here only induction. Current manual 
analyses of protocols have not moved much beyond 
descriptions of behavior and induction of the 
various static structures. Indeed, making 
protocol analysis easier to do appears to be a 
precondition to tackling these other tasks. 

IV.  Description of Behavior; PAS-I 

PAS-I takes as input a linguistic repre- 
sentation in terms of topic segments, i.e., 
groups of words dealing with a single task focus, 
and delivers as output the PBG. Both the prob- 
lem space and the linguistic rules are taken as 
given (the production system is not involved). 
The problem space is that used by most adults 
with a Western, moderately technical education, 
the so-called augmented problem space (17). 

Figure 9 shows the overall flow diagram 
for PAS-1. The first stage consists of a trans- 
formation from a linguistic representation (the 
topic segments) into a set of semantic elements. 
In the second stage these elements are processed 
and refined to produce tentative groupings of 
elements. The third stage involves processing 
these groupings, refining them furtiier by means 
of inferential techniques to produce groups 
consisting of one operator element and its 
associated input and output knowledge olements. 
In the final stage these groups of elements are 
incorporated into the PBG. Feedback exists 
between the last two stages.  The inference 
processes (determining unknowns and finding 
origins of knowledge) make strong use of the 
knowledge state of the subject.  Consequently, 
the PBG must be recomputed with every change of 
knowledge, so it can provide an accurate esti- 
mate of current knowledge. As a result, pro- 
cessing does not proceed in a pipeline fashion 

in which each representation is computed com- 
pletely on the basis of lower level information. 

Tile feedback loop emphasixes a general 
principle: that information at any level can be 
brought to bear to determine a particular item. 
Thus, the separate intermediate representations 
do not have validity independent of the total 
analysis. Kxtonsive use of feedback indicates 
a breadth-first, parallel scheme of computation. 
But matters will not remain even this simple 
and subsequent versions will use data not yet 
processed to help analyze the data currently 
being processed. 

The Linguistic Processor 

Figure 10 illustrates the operation of the 
initial stage, the Linguistic Processor, in 

jmore detail. A single topic segment is handled 
at a time.  It is processed by a grammar to 
yifld a set of semantic elements. This grammar 
is philosophically a key-word graiimar that 
responds directly to cues for the occurrence 
of the various elements. 

Each example of Figure 10 shows the topic 
segment, its analysis in terms of linguistic 
classes, and the final semantic elements pro- 
duced. Figure II gives (in a modified BNF 
notation'''*) the fragment of the granmar needed 
to process the examples of Figure 10. These 
represent only a small part of the rules used 
by the Linguistic Processor (see the companion 
paper for the complete grammar and a detailed 
description of its use). Notice that often 
more than one element can be produced from a 
single segment.  Tile segments usually reflect 
a single topic, yielding one problem space 
element, plus possibly some related indicator 
elements. But, as example (f) shows, the 
grammar does not depend absolutely on there 
being only one topic per segment and can gener- 
ate two independent elements.  The ability of 
the grammar to do this is relatively weak, and 
the assumption that the sequence of words 
reflects a single topic is strongly built- in. 

Currently, the first two stages do not 
depend on feedback and can be produced on 
separate passes.  Later versions of PAS, 
however, will Incorporate feedback to all 
stages. 

Here a vertical bar (|) indicates disjunction, 
and the absence of a blank indicates con- 
catenation, e.g., <a> :=: B C D | EF defines 
the class a, consisting of all expressions 
containing B, C, and D, in that order, or 
containing EF.  Thus BCD, EF, BCAD, BRCLD, 
and QBSSCRDA are all members of class a. 
The null string is represented by < >. 
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An  important   licaturo of.   tiio  Unguistic 
Processor  is  its avotclanco of a  standard gram- 
matical analysis.     No  irruvocaljlo commitment 
is   impliod  thereby,   though we  are  disposed  to 
explore   such a   strategy thoroughly.     Language 
is  highly overdetermined;   the  meaning of  a 
sentence can be   inferred   from many partial 
aspects:   syntactic,   semantic,   paralingulstic, 
and  contextual.     An extremely  strong  semantic 
component  is available  in  the  problem solving 
theory for cryptarithmetic,   as  represented  in 
the  problem space.    Thus,   it   seems appropriate 
to   see  how  far   semantic  analysis can carry us. 
Actually,   grammars are  not available  for  the 
sort of  fragmented and ungrammaticaI  speech 
with which wc  have   to  deal,   though  the  depar- 
tures  from full grammaticality do not  seem 
insuperable. 

To   show  the   limits of   the   present  analysis, 
figure   12   lists  several examples of  some of  the 
more  complicated  types of   fragmented and 
ungrammatica1 utterances  the  Linguistic  Proc- 
essor  accepts as  input.     Those   segments   for 
which the  linguistic analysis  is clearly 
inadequate  and where  no  improvement   in  the  key- 
word   type  grammar  appears   likely  to   suffice 
(outside  of  including  the   segment   itself  as a 
special case)  are marked with asterisks.     In 
the  unmarked examples,   however,   enough  task 
information was extracted  to enable  the  rest 
of  the   system  to  provide  an adequate  analysis. 

The  grammar  is  given;   i.e.,   it   is  not 
determined  by  the  analysis.     it   is,   however, 
based on  several  kinds of  knowledge,     liasic 
grammar and  dictionary knowledge   in  some way 
enters  throughout.     There   is  considerable 
special  usage  due   to   the   task  definition,   e.g., 
the   use  of   letters and  d.'gits  and   the   relevance 
of   terms   sach  as  "writini;"  and  "column at   the 
left."    Thougl   these words   retain  their normal 
English  usage,    they are   in  the  granunar only 
because  of  th     particular   task and  its  physi- 
cal  arrangemc ;'t.     Beyond   the   task  definition 
is  the  problem space.    Certain arithmetic 
concepts,   such  as  "even"  and  "odd" would  not   be 
included   for a   subject who  did  not  use   the 
augmented  problem  space.     Thus,   it   appears  that 
the   linguistic   rules  are   not   independant of  the 
other   structures  posited   in   I'igure   7.     Finally, 
the   subject   sometimes chooses  uncommon ways of 
saying  tilings.     Jn a   limited  grammar,   it may be 
necessary to  consider  the  uncommon ways  as 
idiosyncratic   to  a   subject. 

The  Semantic   Processor 

The   second   stage  of   PAS-I   is   the  Semantic 
Processor.     Here  a   stream of   linguistically 

.derived   semantic   elements   is  arranged   into 
initial approximations of operator groups,   each 
containing an operator element  and   the   sur- 
rounding knowledge  and  indicator  elements.     Wc 

call  them protogroups,   to emphasize  the  sub- 
stantial  inferential gap between these Initial 
groupings and the  final operator groups that arc 
input  to  the  PßG. 

Actually forming the protogroups is  the 
last  step in a  three-step process illustrated 
in  Figure  13.    The   first of  these  steps does 
temporal  Integration.    The  second normallxes, 
mapping a wide variety oi occurrences of know- 
ledge,  and  indicator elements  such as  (11'')» 
(BKCAUSL),   (TriEKEFORE),   (THEN),   (OK),  etc., 
Into a  single element  such as  (BliCAUSIiOF ,..) 
or  (CONU...).    The  third does  the actual group- 
ing.     During the course of these  three  steps 
all  the indicators are assimilated one way or 
another.     Some  indicate  the  relationship of 
input or output.    Others  (e.g.,   (),   the empty 
clement)  indicate a break in the verbal  stream, 
so'that a  single operator group cannot  span 
this.    Thus,   some groups are formed only with 
knowledge elements,   as in the  third protogroup 
in Figure   13, 

One effect of the  first  step of the group- 
ing process is to combine information that 
existed in adjacent  topic  segments.    This can be 
seen in Figure  13,  at  the  left, where the occur- 
rence of  (DIGIT 2)  is combined with the prior 
occurrence of  (liQ G 1)  to give   (MEQ G 1 2), 
i.e.,   "G must equal  1 or 2."    Other forms of 
recombination also occur,  e.g.,   (NEG) and 
(E^ G *D)  in the  same  segment become  (NEQ G *D), 
i.e.,   "G is not equal to  some unknown digit." 

The  source of the  rules used by the 
Semantic  Processor is the   limited task environ- 
ment  in which the  subject  is working,    G cannot 
be   1 and 2,   so  it must be  1 or 2,     Digits  tend 
to  be mentioned only in connection with letters; 
more   strongly,   if a  letter is  in the  immediate 
neighborhood,   the probability that  it is asso- 
ciated with the digit is quite high.    The  source 
of  the  final grouping  (step 3),   is the basic 
assumption that everything can be described in 
terms of operators and their inputs and outputs 
and  that mention of  inputs and outputs occurs 
in the  immediate neighborhood of the operator. 

The Group  Processor 

After grouping has  taken place,   the next 
stage,   the Group  Processor,  attempts to obtain a 
complete picture of what the  subject knows at 
each moment and what operators he applies.    This 
stage consists of two main parts,   the  first  (the 
Determine Unknowns Mechanism)  attempting to  fill 
in unknowns  in existing operators and knowledge 
elements,   the  second   (the Origin Mechanism) 
attempting to infer operators and knowledge that 
were  not verbalized by the  subject during the 
experimental  session. 

The  first part  is the analog of anaphoric 
reference  in the  system.     Many of the elements 
created by the Linguistic  Processor have 



variables in them (denoted •'L,   "D,   "C,  etc.). 
Examples occurred in Fiyure   10  (c and d). 
During this step an attempt is made  to match 
incomplete elements  (elements with variables) 
against the possibilities defined by the current 
context.    One possibility is  that an element 
identical  to  the candidate already exists in the 
knowledge  state.    Then,   the value  is  simply 
filled lnt  as  shown in Figure  14  (a).    The know- 
ledge  state is defined at this  level by acces- 
sing  the PDG, which is kept updated. 

A  second possibility is that  the candidate 
is concerned with the processing of a column. 
The various columns are considered and an 
estimate made of how well  the candidate  fits 
the column;   If the  fit  is close  enough then the 
value of  the variable  is determined  by matching 
to  the appropriate element generated  from the 
column.     Figure   14 (b)  illustrates  this process 
for operator element  (PLUS A  "L.)  and knowledge 
element   (EQ T  ■•D).    The unknown  for  the operator 
element  is  found by direct comparison with the 
letters in the columns.     However,   the unknown 
for the knowledge element  is  found by proc- 
essing the columns containing T  (in this case 
only column  1)   in a one-step attempt  to  find 
its value.     No attempt  is made  to  determine  the 
values of unknowns directly In terms of prior 
linguistic  representations.     It  Is more profit- 
able   to work in terms of  the good  semantic 
representation at hand,   the  PBG. 

The  second part of  the Group  Processor, 
the Origin Mechanism,  attempt s to posit opera- 
tors and knowledge that did not occur in the 
linguistic  representations.    The basic genera- 
tor of these  inferences is  the principle  that 
each operator has inputs and outputs and that 
all knowledge was produced earlier as the out- 
put of  some operator.    Also  involved is a 
continuity    principle  that knowledge once pro- 
duced  is available  in the knowledge   state 
thereafter.'"    These  two principles permit us  to 
infer,   for any knowledge,   the existence of an 
operator  that produced it,   and  for any operator 

the existence of knowledge for inputs and out- 
puts that are compatible with it,* 

Table  2 gives a   list of knowledge  elements 
and the operators which can genernte them.    To 
infer an operator given its output we   test each 
operator  (defined as a possible candidate by 
the  table)  to see if it could generate  the 
output when subject to the constraints of  the 
current problem situation.    Of the operators 
which pass  this test,   the one whose  inferred 
inputs are most consistent vlth  the current 
knowledge  state  is chosen as the most   likely 
generator of  the output.    The process now con- 
tinues recursively,  as operators  for generating 
the Inferred inputs are  themselves inferred. 

Figure   15 shDws how this works.    At  Che  top 
of the  figure we have the knowledge  state that 
is assumed,  and below it the operator group 
under consideration.    The  top of  the  tree  Is the 
knowledge  element whose origin is to be  deter- 
mined;   It  is part of the operator group.    The 
tree  itself is composed of operator groups 
which overlap  such that  the output of one opera- 
tor may also  be one of the Inputs  to another 
operator.     For example,  at the  first   level  the 
leftmost group consists of operator  (PC 6), 
inputs  (EQ C6 0)  (EQ D  5)  (EQ G 2),  and output 
(E^ R 7)   (i.e.,  operator PC on column 6 with 
D=5,  G=2 and carry=0 produced R=7).    Each group 
at  the  first   level represents a  different 
hypothesis that could have produced  (EQ R 7). 
At the  lower  levels the groups  represent 
hypothesis that could have produced the  Inputs 
to  the higher  level groups.    The  tree  is 
generated in a breadth-first  fashion,  and at 
each  level  the decision about which path  to 
take  is based on a measure of the agreement 
between the Inputs for each path and the current 
context.     In Figure  15 the encircled  branches 
show the  path chosen to represent  the origin of 
(EQ R 7).     These branches Indicate  that a   PC 
on column  I with Cl=0 and D=5 produced C2=l>   an 
AV produced I/=3,  and a  PC on column 2 with C2=--l 
and ü=3  produced R=7. 

This continuity principle can be modified to 
take into account separate memories,   so that 
the principle applies only to Short-Term 
Memory,   subject  to a  limited capacity,  and 
that parts of the knowledge  state   stored in 
other memories  (Long-Term Memory or External 
Memory) must be retrieved by recall opera- 
tors.     But  these complications are not 
considered here. 

*    The  subject could possibly make an error in 
applying an operator.     However,   the concept 
of problem space implies that  it  is used only 
if  the operators can be applied with reason- 
able  reliability.    Thus,   in general,   errors 
in operator    function are rare events and 
cannot  be predicted. 
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The   I'BG Ganm\i£0£ 

Tho   L'tnal   stage  oC   I'AS-I  goucratus   Cho   PUG. 
Ic  iri  ovaketi wliciiuvür a« opuracoi" gfoup has  boun 
pcoducotl  by the  Gruup I'rocossor.     Uuo   to  thu 
opuratiou ot   tlio   lattüf,  a chain oL  groups,   each 
with complotoJ  input and output  ulumonts and 
operators,   may  be  produced  at  one   timo. 

The   I'liG Generator works  as   ioLLows.     It 
takes   a   single  operator  group,     consisting of 
one  operator  and   its associatud   input   and output 
elements  and  incorporates  it   into   tho  existing 
I'liG.      In   the   simplest case   the   group  is  merely 
tacked  on to  the  growing end of  the   l'ßG.   However, 
ii   there  exists a  direct   inconsistency between 
one  oC   the  output  elements  of   the  group  and any 
currently active  output  clement   in  the   I'BG,   a 
restructuring of   the   fBG must  occur.     A  know- 
ledge   element   (and  its  node)   is  considered 
currently active   if   it  belongs   to  a   node   lying 
along   the   lower   (growing)  edge  of   the   PI3G tree. 
Thus   the  conjunction of all  currently active 
output   elements  constitutes  the  current  knowledge 
state.      PBG growth consists   simply of  adding a 
new   node   to   the   last  currently active   node   in 
the   tree.     I'BG  restructuring  consists  ot   aban- 
doning   nodes   (or  groups of   nodes)   by  redefining 
the   location of   the   last  currently active  node. 
Thus   restructuring  is  equivalent   to   returning 
to a   prior  point   in the  problem space,   i.e., 
a  prior knowledge  state. 

The   rationale  for  restructuring  is  the 
following.     As   tin   subject   traverses   the   problem 
space   he  may discover contradictions  in   his 
solution,   or  perceive  that  certain  information 
is  irrelevant.     He will   then abandon all   infor- 
mation which   initiated  the  contradiction or was 
found   irrelevant,   thus  returning  to   some  pre- 
vious   knowledge   state.    This  abandonment or 
backing-up  procedure  is what  makes  the   PBG  tree 
structured. 

An example  of  I'BG  growth   is  given  in 
Figure   16."     In  this  artificial  example-'"  the 

~:    The   I'liG   in  Figure   16   is  essentially a   dual 
representation ol   the one in   Figure   4,     Figure 
4  lias  nodes   for knowledge   states  and  branches 
for  operators;   Figure   16  has  nodes   for opera- 
tor   groups  and  branches   lor   the   resulting 
states  of knowledge.    The   two   representations 
carry  the   same   information.     Though  both 
figures   deal  ostensibly with   the   same   seg- 
ment   of  behavior   (Figure   2),   they  are   both 
artificial  examples  for  purposes  of   illus- 
tration. 

The   companion  paper   (25)   contains   examples 
from actual   protocols. 

input under consideration is the   set of operator 
groups  shown at  the  top of  the  figure.    The 
first   five  groups are,   in fact,   the ones which 
the  example of  Figure   15 produces.     Figure   16 
shows the   PUG at  two stages:  after the growth 
of  7 and  9 groups.    The output of group 8 con- 
flicts with that of node  5,   loading  to  the 
abandonment of nodus 4,   5,  6 and  7.     Note  that 
value assignments  (in this case node 4) which 
lead  to conflicts arc eliminated as well as the 
conflicting  Information itself. 

We have  traced through tho operation of 
PAS-I,   primarily b>  example.     It  generates a 
description of  tho  behavior of  the  subject, 
given  the  input   linguistic  representation and 
also  the  structural models of  the   linguistic 
rules and the problem space.    The  space of 
possible  descriptions is sufficiently rich  that 
a genuine  inferential procedure  is  required  to 
find one  adequate  description.     We  have  not, 
at  this  stage of development,  attended  to 
whether  there exist alternative  descriptions 
within the  space and,   if so,   how  to choose a 
preferred one. 

V.     Description of Behavior; 
Obtaining Topic Segments 

PAS-I  takes the  topic  segment as  input, 
though  the   lexical  representation (the  sequence 
of words) would appear more natural.    The  reason 
for  not extending the analysis back another 
stage  is  that  the appropriate   lexical  represen- 
tation is missing. 

The   fundamental basis for  topic  segmen- 
tation  is  twofold:     the nature of English,  where 
elementary expressions usually involve a  single 
topic;  and  (more  fundamentally)   the  serial 
nature of human information processing at  this 
level of cognitive behavior.    The  subject 
attends  to  one   thing at a  time;   consequently 
he will have a  single topic  to comment upon if 
he  follows  the  instructions of  Figure   1.     (Some 
confusion between adjacent  topics may occur,   but 
this does not alter tho basic   situation.) 

The   segmentation can bo made  on  the  basis 
of  three  sources of knowledge:     task structure, 
syntactic   structure,  and prosodic  structure 
(i.e.,   pauses,   breaks,   stress,   intonation). 
These provide  substantial redundancy,   so  the 
problem docs not appear difficult.     From the 
task,   there  should be reference  to  no more  than 
one  variable  type  (i.e.,   letter or carry)  and 
one  value   type   (digit,  even-odd,   etc.).    A  topic 
can contain one of each,  of course,   since  it 
often expresses a  relation between a variable 
and  a  value   (e.g.,   1)  is   5).     Certain  things 
are   lost  by this,   e.g.,  disjunctive  notions, 
such as "R could be  7 or 1," but  in PAS-I 
latci  mechanisms compensate" for this.     From 
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syntax,   a  topic   should have a  siiiglu  viirb and 
not oxtend ovur  sontenco  boundaries,     From tlic 
prosodic  intormation,   boundarius botweon topics 
arc generally indicated  by breaks,   pauses,   and 
downward  inLonations.     Using   just   these   three 
principles,   without   rcHinements,   the  entire 
protocol  of  Si  could  probably  be   segmented   into 
topics  75,j correctly. 

Much of  this   information  is contained 
already in the  punctuation,   as it comes  from 
the  human  transcriptionist.     Thus,   given  the 
punctuation,   topic   segmentation appears  almost 
too easy.    On the other hand, without  punctua- 
tion we  have  the   lexical  representation as a 
seijuence of words,   and the  task of  topic  segmen- 
tation appears  to  become  quite difficult.     In 
this  form the  task  is artificially hard,   since 
the transcriptionist had available not only the 
sequence of words,   but also prosodic  information 
as well as meaning.    Thus,   it is not  reasonable 
to attempt   the   task mechanically until  a   lexical 
representation  is available  that  incorporates 
prosodic  information as well as  lexical items.* 

VI.     Description of  Behavior; 
Trace of  the   Production System 

I'AS-I   stops with  the   PBG,   not  because  of 
the  difficulty of  proceeding   further,   but   simply 
as the current  state of development.    The next 
behavior description task  is  to produce  the 
trace of a production system (recall  Figure   5) 
given the  PBG,   the problem space, and a  production 
system. 

This  task  seems easier than the one  done 
by  PAS-I.    The  production  system,   being a  com- 
plete program can be run by a  suitable  inter- 
preter  (as  illustrated in  Figure 6)  to  produce a 
trace of  the changing knowledge  state.    The  task 
seems to  be  simply one of  simulation,   but  in 
actuality it  is more complex. 

First,   the  trace must  be  identified with 
the behavior given by the   PBG.     Both the produc- 
tion system and  the  PBG  (i.e.,   the given data) 
are  imperfect.     Consequently,   the task of crea- 
ting the  trace  requires matching it at every 
stage  to  the  PBG and  dealing with exceptions. 

Another artificial problem is disambiguating 
sentences  such as "Suppose I make this a 6" 
versus "Suppose  I make  this A 6," or in 
general distinguishing between "a" and "A", 
"be" and "B",   "Gee" and "G",  "are" and "R", 
etc.     In these cases  the auditory represen- 
tations contain additional clues to recog- 
nition that arc   lost  if one  simply considers 
the   sequence  of   lexical   items.    Therefore, 
we do not attempt  such disambiguation yet. 

Further,   the  trace may contain  several   steps   for 
each one  in  the  PBG.     For example,   the produc- 
tion system may predict   the occurrence of opera- 
tors  that   simply were   not   picked  up  in  the   PBG 
from the  verbal  behavior.    Thus,  a   failure   to 
match at a  given  step  is not conclusive,   since 
convergence  may occur   if additional   steps  are 
taken. 

Second,   the  production  system may embody a 
more detailed model of  the  information proc- 
essing  than  is  used   for  the  problem space.     This 
means  that   the  trace could contain operators 
that  never occur in the  PBG.     For instance,   in 
the manual analysis of S3  the problem space was 
given in terms of  four operators  (PC, AV,  GN and 
TD,  as  shown  in Figure  3),    The production 
system added  to  this additional operators whose 
function was attention direction or recall   (e.g., 
FC,   find column and  FA,   find antecedent  expres- 
sion).    These operations are often not explicit 
in the verbal  behavior and only become evident 
when a complete model of  the process is 
attempted. 

Third,   the production system may be  incom- 
pletely specified.    This often arises because 
the operators  themselves are  incompletely 
specified.     For example,   the problem space 
defines PC  by giving only the  types of input 
information it can use  and produce   (knowledge 
elements associated with a  specific column). 
It does not define  the  fine  structure of the 
operator.    A production system may add  to  this 
definition a program that works whenever actual 
digits are available   (e.g.,   producing T=0 in 
column I,  D+D=T,   if D=5 is given).    But  PC may 
remain undefined  in other cases  (e.g.,   in 
column 2,   L+Lr=R,  where carry=l,   but nothing  is 
known about  L). 

A scheme  to handle  these  three problems has 
the  following components: 

An interpreter of production systems 
that generates the next   line of trace. 
This   line may have  symbolic  indica- 
tors in it   for outputs that could not 
be computed due  to  lack of  speci- 
ficity. 

A match rou^ne  that compares a   line 
of trace with a knowledge  state of 
the  PBG: 

If the two are  identical where 
definite data is given,  and 
the  PBG data passes all  tests 
associated with any incom- 
plete operators in the  trace 
then advance to the next  node 
of  the  PBG and  let the  inter- 
preter advance  to the next 
trace  line. 
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If   Clio   PHO  dut.i   it;   not   Ulciitl- 
(.M I   Co   Clio   CIMCC,   and   V(.'C  is 
noC   Incoualstent wicli   ic, 
.lüv.incc1   the   Cr;ico  only. 

If   clic   I'BG  did  ami   Clio   Craco 
.ire   inconsistent,   t'.ii L. 

A  back-up mechanism that  pfirmlts the 
docisions  of   tho  maCch   roiitino  Co  be 
tentative,   so  that  alternative 
matcltlngs  of   trace   Co  data  can  be 
tried. 

Below  are examples of  identity,   conaistency,   and 
inconsistency,   assuming  that   0-ri and C2=l   have 
already  been established  as  elements  in  the 
trace  and   PBG. 

Trace 

(PC l)(EQ T 0) 
(PC l)(EQ T 0) 
(PC 2) 
(PC 2) 

PUG 

(KM T 0) 
(RQ T 6) 
(ODD  R) 
(m G I) 

Comparison 

identicaI 
Inconsistent 
consistent 
inconsistent 

Note that (ODD R) passes the tests associated 
with the incomplete operator PC, but (HQ G I) 
does   not, 

This   schomo   does  not  contain  .my general 
mochanism  for putting a   simulaCion  back on  tho 
Crack   after error.     But   it   is   responsive   Co 
fitting  tho  partial   results  of  the  production 
to   the   existing data  in  tho   PBG.     As  a   side 
effect   it  produces a  sequence of   stipulated 
outputs  of  the   incomplete  operators.     The  usi,- 
fulness  of  this  s'ei|uence will   be   discussed  in 
tho   next   section. 

Imnlementinn  the  above   scheme   is   not  a 
c.isk  of   the  magnitude  of   Lhac  accomplished  by 
PAS-T.       it  would   produce,   however,   a   sophis- 
I icated   simulator,   capable  of working   jointly 
with  an   imcompletely  specified   production   system 
and with  the   I'BG data   ChaC   Che   system has  to 
match. 

Vil.      induction   of   Rules 

The  description  of  behavior   faces  certain 
issues  of   inductive   inference:     what   a   );i.ven 
lexical   secjuence  means  and  what   knowledge   a 
person  possesses  at   a   v;i.ven  moment.      Inducing 
the   various  rule   structures   from  the   behavior 
faces  different   issues.     Since  wo   do   not   yet 
have   operational   programs   for   these   inductive 
tasks,   we   are   limited   to   fraraini;   specific   prob- 
lems.     Wc will   discuss   briefly  the   induction of 
operators,   the   induction of  productions  and  tho 
Induction ol   the  problem  space.     We  will   not 
discuss   Che   Induction of   linguisctc   rules. 

Induction of operators 

The  problem space  defines  the  general 
characteristics of an operator  —  essentially 
its   range  and  domain  --  but  docs  not  dofino 
the   action  input/output   relation.     for example, 
from  the   problem space  of  figure   3 we  know  that 
PC   processes columns,   using  information about 
the   letters and carries  associated with a column 
and  producing new information about associated 
letters and carries.     But wc  have  not  defined 
the output  it will produce  from a   specific  sot 
of   inputs. 

Given the  successful  formation of n  PBG, a 
series of exemplars Is obtained of  the action of 
an operator.    A portion of  such data  for the 
session of figure 2 is  shown in Table 3  (tho 
full   table   has   70 entries).     The   task  Is  then 
the   following,     find a  process  that will work 
for all   .nputs of the  form shown and will pro- 
duce   the  outputs  shown when given  the corres- 
ponding inputs.    The data need not be consistent. 
Thus,   it  is  permissible  to designate exceptions 
or  to  partition the input-output  table as 
deriving from several distinct processes. 

As  In many induction  tasks,   trivial  solu- 
tions are possible.    Since  the Input-output 
table  is   finite,   the  table  itself  could  be  taken 
as memorized.     This  Is  equivalent   to   saying  the 
subject   does  not calculate   the   result,  he   simply 
knows It.     for example,   in item I of Table .') 
(D=.5 and carry = 0 in column  1)  he  simply knows 
that  5+5=0 with  1 to carry.     Likewise,   in item 2 
(carry 'I and  L+l/=R in column 2) lie   simply knows 
f-.at  R  is odd. 

This  solution is unsatisfactory,   since wc 
believe  the  subject must process Information to 
arrive at certain results.     Item 1, which appears 
to   involve   just  the  addition table,   might  plaus- 
ibly be memorized;   item 2 would  seem to require 
processing. 

Thus,  additional conditions must be placed 
on the  induction task.    One possibility is to 
consider the operator Itself as a miniature 
production  system with  its own  special  set  of 
operators.     Then memorination can  be  equated 
with having a  production  (i.e.,   a  condition- 
action  rule)   that  yields a   result  directly  in 
terms of  the   inputs,     for example,   letting 
(operand  d)   indicate  that   the  number d  is   labeled 
an operand  and,   similarly,   (sum d)   that  d   is 
labeled  a   sum,   i.e.,   a   result,   then  the   following 
productions would  be  admitted; 

(operand   I) (operand 1) —> (sum 2) 
(operand   I) (operand 2) —>  (sum 3) 

... ... ... 
(operand  9) (operand 9) —> (carry I)  (sum 8), 
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Xhuijc  productions  represimt  Liic  Ixisic  jcltliLiuti 
Liiblo.      However,   no  producLion   like   tlie   lollow- 
ing would  be  admitLed: 

(operand   1)(operand X) (operand  X) (sum odd), 

Tills  cask ot  induction  is  non-Lrivial 
(1,2,3),     For  instance,   in prior analyses ot  SI 
(by hand)  two different programs  for  tiie column 
processing operator iiavc  been  induced   (13;    17, 
Ch.   u),   neither of which  is entirely adef|utitc   to 
represent   the  data  of Table  3.     Vet   tiie   task nas 
a closed character  that makes  it  amenable   to   the 
inductive   techniques used elsewhere   in artificial 
intelligence.     Furthermore,   if one  considers  the 
corresponding  tables,   not   lor  PC,   but   (say)   for 
the operator  that  generates all  values of  a 
variable  defined  by a  given  set  of   relations, 
(e.g.,   generate   R  for R odd  and  R~>5),   the   task 
appears  easier.     For  instance,   one   table   for 
the  generate operator  (13)   showed  that   the 
values   generated were always correct   (i.e., 
satisfied  the  given  relations)  and  almost  always 
went   from   low values  to high.     These   two   speci- 
fications  essentially   defined  the  process. 

Induction of  the   production  system 

The   information given  is  the   PBG,   the   set 
of nodes giving the knowledge  state at each 
point   in  time  and  the operator  that  advanced 
(or modified)   that  knowledge   state.     The  desired 
result   is  an ordered  sot of  productions which, 
when applied at   each  node,   lead  to   the  evocation 
of  the  operator  that  in  fact occurs at   that  node. 

The  basic   space of productions  is comprised 
of those  that can be  formed  in some  production 
languag. .     Its conditions  are  in  terms of know- 
ledge  Clements;   its actions  are  in  terms of 
operators with  inputs  specified  by  some  operand 
identification  procedure associated with  match- 
ing  the condition.     Although we  have   not 
designed  A  production   language   for our automatic 
system,   a   formal   version of  this  type  of   lan- 
guage  can  be   found   in   (17,   Ch.   2). 

As  before,   we could make a   large  input- 
output   table,   with  one  entry  lor  each  node  of 
the   PUG.     The   input would  be   tlte   total  knowledge 
state  at   the  node;   tiie output would  be   the  opera. 
tor at   the  node   (not   the operator's output). 
Then a   trivial   solution is  the  production  system 
that   has  a   separate  production   lor  each  node, 
namely,   the  one with condition equal   to   tiie 
knowledge   state  and  action equal  to  tiie  operator. 

Tliis,   however,   is  a  useful   trivial  solu- 
tion,     it  permits  posing  the  problem of  induction 
of  the  production  system as  the  problem of  con- 
structing a   set  of common  subroutines.     That  is, 
the  problem  is  how  to  rewrite  the   set  of  N   pro- 
ductions   (N,   the   total  number of  nodes)  as a   set 

of  l<   (much   less   than N)  pa mine ter I zed  produc- 
tions.    A  natural way to proceed  is  by incre- 
mentally attempting  to  reduce the  number of 
productions.     Two  productions witii  the   same 
actions  are  compared on  tiieir conditions   (i.e., 
the  knowledge   states),    looking   for   the  common 
elements.     Additional  clues  exist,   o.g.,   that 
an evoked production probably uses  the  infor- 
mation  that  was  just  added  to  the  knowledge 
state.     The  problem of   the  induction of  a  pro- 
duction   system lias  already been  investigated 
relative   to  machine   learning of heuristic   (23t 
24)  and   some  of  these   techniques  appear appli- 
cable . 

An alternative  approach   (the  one   that 
scientists  appear   to  use)   is  to hypothesize  a 
general   form  lor a  production and   then  see  how 
many  situations  it   tits.     This  raises an  impor- 
tant point  about  induction problems:     the  prob- 
lem is  never  posed   in  an unstructured way. 
There   is  always a   space of possibilities  that   is 
evoked  on  the   basis  of  past  experience  and  know- 
ledge   (and whose   selection constitutes  in  some 
sense   tiie   real   inductive   leap).     Thus,   after 
only a   few analyses   (such as  the  manual ones 
already accomplished),   much is known about  the 
general character of  production  systems  in 
cryptaritlimctic.     For  instance,  almost every 
subject  has a  production that  is concerned with 
making use of new  information,   i.e.,   a produc- 
ion of  the   form: 

(.KQ letter digit) —> (FC  letter),{VC column) 

like   Pi  of  Figure  4,     Similarly,   all   subjects 
have  a  production   for  backing down  the   tree, 
going   from  the  contradiction of one   fact   to   the 
contradiction of   the  antecedent   fact.     Knowing 
sucii productions exist  reduces the  task of 
induction considerably,   since   specific   searches 
can  be  made   for  nodes where these .productions  arc 
evoked.     Currently,   such  productions  exist  as 
particularized  viriants  for each experiment 
studied,   but   generalized  forms  do  not   seem 
difficult   to  obtain,     liven without  a  general- 
ized   form,   strong clues  exist concerning which 
nodes would  bo  candidates  for the  c.ocation of 
sucii  productions,   hence which  subset  of  nodes 
should  be  collected   for attempting,   as a   sub- 
task,   the   induction of   (say)  a  "MSC  new  infor- 
mation"  production. 

The   induction of  the  production  system 
tikes on  a   lorin distinct   from the   induction of 
operators   (which  is   tiie  more  general   form of 
inducing a   function   from  its  input-output 
table).     Tiie   reason  is   that  productions were 
chosen  to  express models ol   human  subjects 
because  ot   their   factorability  into  a   series  of 
independent  pieces.     Thus,   the   forir of  the 
process   (as  a   set  of   productions)   is  already 
fixed  and  does  not  have   to  be  induced   from Che 
data. 
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Inductiüii üf   Lhc   |)robLeiii  S|K)Ci! VIII.     Conclusion 

Wo ussuiiiü   LII.IL   Lhc  subject  is operating  in 
Süiuo   problem  space.     The   quesLion   is   to   dotcr- 
mino   its  nature:     wh.it  kinds oi  knowledge  can 
the   subject  have  and what   sorts ot operators 
docs  he  apply  to  obtain   it. 

The  major   issue   (as  with  all   induction 
problems)   is what   is  known  of   the   space  of  all 
problem  spaces.     We  know,   by definition,   that 
they consist  of  a   set  of  knowledge  and operator 
elements.     further,   wc   know   these   both   relate   to 
the   task  uf  cryptnri thine tic,   and we   have  good 
linguistic  grounds   for  positing how  it will   be 
talked  about.     For  example,   the   subject will 
refer  to  "N",   rather  than  to   "thc-stick-like 
character with  two   verticals and one  diagonal." 
If   such   linguistic   assumptions  are  violated, 
we  have a more  difficult   task of  induction. 

It  appears   to  be   the  case   In cryptarithme- 
tic   that  example     of  operator  and  knowledge 
elements occur  in  relatively   isolated  and   simple 
linguistic  contexts.     Thus  evidence  can be 
gleaned   for  the   induction whore  there  is   little 
language  complexity or   simultaneous occurrence 
of conceptual  elements   to  complicate matters. 
Table  4  shows  some  of  the   topic   segments   from 
the  protocol  of  S3   that  appear   suitable   for  this 
task. 

This  suggests  an  inductive  program built 
around  an  elementary  grammar  and  a   dictionary 
composed of  verbs,   relation   terms,and  task  terms 
(i.e.,   letters,   names,   words,   numbers,   positions, 
etc.).     Working with  offen   language   requires  a 
targe   dictionary with  definitions   relevant   to 
tiie   task,   in  this  case  cryptarithmetic.     Then 
we  can expect   such  a  program  to   identify  from a 
subject's  protocol   the  collection of  knowledge 
and operator elements he   is  using  to  define  his 
problem  space. 

Creating  a   list  of   problem  space  elements 
is  a   useful   first   step.      For   tiie  problem space 
affects   the  entire   protocol   analysis   sketched 
in   Figure   9.     It   directly   influences  the  opera- 
tion  and  organisation of   the   Linguistic 
Processor,   the  Semantic   Processor,   and  the  Group 
Processor.     If  a   quite   new   problem  space  were 
obtained  by  the   above   procedure,   how would   the 
analysis  of   Figure   4   be  carried  out'.'     Operational 
success   in   inducing   the   problem  space   lies  not 
just   in   recognizing  the   elements,   but   in  knowing 
how   to  use   them  --   i.e.,   how   to   integrate   them 
into   the  analysis.     This  part  ol-   the   question  is 
clearly  premature,   for we   have  only  begun  to 
develop  operation.il   notions  ol   how  the  problem 
space   effects  our  analysis,   and  are   in  no 
position  to  rise  above   this   to  programs  that 
create   protocol   analysis   schemes. 

We  have  attempted  to   lay out   the  task of 
protocol analysis as a field for work in arti- 
ficial  intelligence.     Our  base   is  rather 
narrow;     protocol analysis in cryptarithmetic 
according to a particular  style   (17).    Our 
reasons  for  this  narr)'-'  base wore   set out  in 
so.lie methodological  preliminaries.     But even on 
this  narrow  base  a wide   range  of  intellectual 
scientific activities emerges:     description of 
behavior,   recognition of   speech,   induction of 
rules  and  structure,   fitting of  parametric 
models,   generalization of models,   prediction 
of beiiavior,  and assessment of validity.    Wc 
attempted   to  give   substance   to   these  tasks, 
starting with the description of behavior,   for 
which we have  a  running system,   PAS-1.    We 
followed this with discussions of the tasks 
that,  on the basis of current work,   seem some- 
what understood:     extension of the behavioral 
description down  toward the   lexical  level; 
extension up toward  the production system trace; 
and induction of rules.    The other tasks appear 
currently to be more  remote. 

The  task of protocol analysis is a real 
one  in experimental psychology,  existing 
independently of any interest  in it as a task 
in artificial Intelligence.     Unlike many tasks 
that currently hold central  fascination in 
artificial intelligence,  protocol analysis 
exhibits a   lack of  formality and an inherently 
inductive character that  seems  to characterize 
mucli other scientific   (and  real world) activity. 
Even Dendral  (5), which is the closest attempt 
so  far to deal with a complex  scientific  intel- 
lectual activity in artificial  intelligence, 
rests heavily on the  formality and tidiness of 
its empirical domain  (chemical  structures and 
numerical measures of  their  spectra).     Protocol 
analysis is nowhere  near  so  tidy.     However,   it 
too  rests on certain simplicities -- e.g.,  the 
simplicity of  the cryptarithmetic  task itself. 
Thus,   it  is  simply one  step  further along the 
road  toward  the   full   spectrum of  scientific 
activity. 

I'AS-I currently does but a  single  task, 
however  strongly one  might   feel   that  this  task 
is  intellectually significant.    One purpose  in 
emphasizing the  spectrum of  tasks encompassed 
by protocol analysis   (recall   Figure  8)   is  to 
note   that  serious,   professional,   long-term 
intellectual activity Is not a   single monolithic 
endeavor.     Rather,   it  is a collection of  inter- 
related  tasks,   tied  together  by common  repre- 
sentations,  common sources of knowledge and 
common memory of methods,   heuristics,   solutions, 
and di!ficultics.    Soon we must come to grips 
with  such intellectual conglomerates. 
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DONALD 

+ C  E  R A  L D 

ROBERT 

D =  5 

The  expression at   the   side   is a   simple  arithmetic   sum in disguise.     Each 
letter   represents  a   digit,   that  is,   0,   I,   2,   .,.,   9.     Each  letter  is a 
distinct  digit.     You are given that D  represents  the digit  5}   thus,  no 
other   letter  may  be   5. 

What  digits   should   bo  assigned  to  the   letters  sucli  that when  the   letters 
are  replaced  by their corresponding digits  the above expression is a 
true  arithmetic   sum? ' 

I'lease  talk all  the  time while you work,   saying whatever is on your 
mind at each moment,   however  fragmentary,   trivial,  apparently irrelevant, 
impolitic,  or indiscreet.    Whenever you fall  silent  for more than a 
moment  the experimenter will ask you to "please  talk." 

FIGURE   I.     Instructions  for Cryptarithmetlc Task 

1. Each  letter has one and only one numerical value  -- 
2. Exp:    One numerical value. 
3. There arc  ten different   letters 
4. and each of  them has one  numerical value. 
5. Therefore,   I  can,   looking at   the  two D's  — 
6. each D  is   5, 
7. therefore, T is zero. 
8. So I think. I'll start by writing that problem hero. 
9. I'll write 5, 5 is zero. 

10. Now,  do  I. have any other T's'.' 
11. No. 
12. But   1  have  another D. 
13. That means  I  have  a   5 over  the other  side. 
14. Now  I have  2 A's 
15. and  2   L's 
lb. that  arc  each  -- 
17. somuwlicre  — 
18. and   this  R  -- 
19. i  R's -- 
20. 2   L's equal  an  R  -- 
21. 01   course   I'm carrying  a   1. 
22. Which will   mean  that   K  has  to  be  an odd  number. 
23. Because   the   2   I,' s  -- 
24. any  two  numbers  added  together  has  to  be  an even number 
25. and   I will  be  an odd  number. 

FIGURE   2.     Initial   Phrases of  Transcription of  S3   Problem Session 



Knowledgi a Elements 

I :^ A|i3|D|E|G|L|N|u|K|T 

d := 0|l|2|3|4|5|6|7|8|9 

a := C1|C2|C3|C4|C5|C6|C7 

aol :=1|2|3|4|5|6|7 

V := l\a 

laet := l\l laet 

eq := EQ|AEQ 

re I := EQ|AEQ|GR|SM|ODD|EVEI 

(EQ  I d) 

(AEQ I d) 

(GR U d) 

(SM V d) 

(ODD V) 

(EVEN V) 

(PEQ V d) 

Operator Elements 

(PC aol V) 

(AV V) 

(GN V) 

(TD I d) 

- 15 - 

Letters in the display 

Digits assignable to letters 

Carries into a column 

Columns (from right to left) 

Variables:  letters or carries 

Sets of letters 

Equality relations 

Relations 

I  is  inferred equal to d 

I  is assumed equal to d 

v is  greater than d 

V is smaller than d 

v is  odd , 

U is even 

V is possibly equal to d 

Process aol  for Information about V 
(t> is optional) 

Assign a value to V 

Generate the pos iblc values of V 

Test if d  is legal for I 

FIGURE 3. Elements from the Problem Space for S3 

PI: {eq v d)  —> (FC u), (PC ooi) 

P2s (GET v)  —> (FCD), (PC aol v) 

P9: (GET Uet)  —> (FL laet),   (GET I) 

Pill (EQ I d) —>  (TD Z <i) 

Additional operators 

(FC v) Find a column containing variable V 

(FL Iset) Find a letter ^n set Iset 

Additional knowledge elements 

Itra   := (D T L R A E N B 0 G)      A set of letters 

(GET Itra) The goal is to find the values of the 
letters in Itrs 

(GET u) The goal is to find the value of v 

FIGURE '». Simplified Productions from the Production System for S3 
(Knowledge in the right side of a production, e.g., (GET I) 
is simply copied into the knowledge state.) 
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6 

(PC   l) 

7 

(PC 2) 

22 

(AEQ D  5) 
(EQ T 0) 

(EQ C2  1) (ODD R) 

(PC 2) 

23 25 

(ODD R) 

« 

FIGURE  5.     PBG for Initial Part of S3  Problem Session 

PHRASE       PRO      ÜPR 

5 
6 
7 

Pl 

PH 

(FC D) 

(PC   1) 

(TD T 0) 

10 
11 
14 
18 

Pl 

P9 

(FC T) 

(FL LTRS) 

P2 (FC  R) 

20 
22 

(PC  2  R) 

RESULT KNOWLEDGE STATE 

(AEQ D  5) (GET LTRS) 

1 (AEQ D  5)(GET LTRS) 

(EQ T 0)(EQ 02 1)(AEQ D 5)(GET LTRS) 

+ (EQ T 0)(EQ C2   1)(AEQ D  5)(GET LTRS) 

(EQ T 0)(EQ C2 1)(AEQ D 5) (GET LTRS) 

R (EQ T 0)(Eq 02   1)(AEQ D  5)(GET LTRS) 

(GET R)(EQ T 0)(EQ 02   1)(AEQ D  5)(GET LTRS) 

2 (GET R)(EQ T 0)(EQ 02  l)(AEq D  5)(GET LTRS) 

(ODD R)(GET R)(EQ T 0)(EQ 02   1)(AEQ D  5)(GET LTRS) 

FIGURE 6.     Trace of  Production System for S3 
(Order of evocation of productions cannot be 
derived from the partial set of productions 
shown  in Fiaure 4.) 
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STRUCTURE BEHAVIOR 

PRODUCTION 
SYSTEM 

r                   —    ■-  —  ■ 

PSYCHOLOGICAL 

A 
S 
S 
E 
S 
S 
M 
E 
N 
T 

E
B 

P 
R 
E 
S 
E 
N 
T 
A 
T 

1 
0 
N 
S 

TRACE 

^    "■"■" 

PBG 

Node 

i 

PROBLEM 
SPACE 

SEMANTIC 

GROUP 
Protogroup 
Operator Group 

- J»» 

V 
ELEMENT 

Knowledge 
Operator 
Indicator 

1 \ 

LI MGUISTIC 

^, 
TOPIC 

Segment 

LINGUISTIC 
RULES t 

LEXICAL 
Word 
Prosodic Feature 
Paralinguistic Info. 

■ 

I 

TAPE 
A . . -1! k. 
MUUIO *•• 

Figure 7. Representations for Protocol Analysis 
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Description of behavior;  Find the representation of behavior at some 
level, given the representation of behavior«at some lower level. 

Recognition of speech;  Find the lexical representation of behavior given 
Che audio representation (special case of description). 

Induction of rules;  Find a static structure (linguistic rules, problem 
space, production system), given a representation of behavior. 

Fitfing of models;  Find a static structure, given a representation of 
behavior and a class of structures described in a parametric or systematic way. 

Generalization of models; Modify a static structure that is adequate for 
some set of behaviors to encompass a newly given behavior in some 
representation. 

Prediction of behavior; Find the behavior in some representation, given 
some static structures along with the defining conditions for an experi- 
mental situation. 

Assessment of validity;  Find the validity, expressed In some representation, 
of ^ given static structure or behavior in some representation. 

FIGURE 8. Varieties of Subtasks in Protocol Analysis 
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(a). (b). 

Segment!       [EACH I) IS 5] 

Analysis: 

Elements: 

Clntter> <equal>      <cliyir.> 

aptdlgiO 

[S0MEWI1KKK  —] 

CO 

(c), (d). 

Segment!     [TIffiN THIS V/ILL BE 7,] [BECAUSE  I KNOW I  »M    NOT    CARRYING      1] 

Analysis: 

Elements:   (THEN) 

<equals> 

Ceq> 

(EQ *L 7) 

<chon>   <pronoun> <equal>   <digit> <because> 

(BECAUSE) 

<ncg> <carry> <digit> 

\   / 
<carryeq> 

<eq> 

(NEC) (EQ *C  I) 

(c). (f). 

Segment:     [2 L 'S  EQUAL      AN    R —] [WE   • LL HAVE, I + I THAT  "S  3       OR      R —] 

I I ^7 I       /     I     \ 
<two> <letter>  /  <cqual>  <letter:.    <digit> <ad> <digit> <digit> <prep> <lcttcr> 

Analysis: 

<letdig>. 

<sum> 

<optletdig>    <letdig> 

<letdigs> 

<eqc> 

Elements: (EQC (PLUS L L) R) 

<leCdig> 

<letdiBS> 

/ 

<ltr> 

<sunC> 

(PLUS I I) 

<eq> 

(EQ R 3) 

FIGURE 10.  Examples o£ Linguistic Processor Operation 



<sunt> :- <lctJii;ü><ad> <lutdijjB> |  -^twuXleCiliip-'S 

<cqc> := <suni^- <oqual> <optleC«llg> 

<cari-yci|> := <carry> <iligit> 

<lLr> :- <pronoun> <li;tLoi->  |  <lct:tor> <pronouii>  |  <let:ter>  j  <ijronoun> 

<optleUdiip' :- <digit:>  |  <letLor> |  < > 

<optdiait> !~ <digit:>  |  < > 

<loUdiBS> :•-- <lc:i;dig:>  |  <pronoun> 

<lctdlg> := <lcti:er> |   <digit> 

<cquals> :« <cqual>  |   "S 

<equal> := IS   |   UE   |  EQUAL 

<lct:tei-> := D   |   L  |   R 

<digit> := 1   |   3   |   5  |   7 

<carry> ;= CARRYING 

<because> != BECAUSE 

<then> := THEN 

<prep> := OR 

<pronoun> := THIS 

<neg> := NOT 

<ad> := + 

<two> := 2 

FIGURE   11.    A Subset of  the Grammar Used by the  Linguistic  Processor 

5.     Therefore,   I can,   looking at  the  two D's — 
'''lö.     that are each — 
'''I?,     somewhere -- 

24. any two  numbers added  together has  to  be an even number 
25. and  1 will  be an odd number. 
38.     if  I  have  to carry  1  from the E + 0. 

^SO.     it's not  possible  that   there could be another  letter in front 
of  this  R is  it? 

69.     and it's  the  L's  that will  have  to  be 3's, 
*72.     Now,   it  doesn't matter anywhere what  the  L's are  equal  to  -- 
;V79.     that  is,   itself plus another number equal  to  itself. 
118.    Then again,   that's assuming  that  N is  less than 3, 

»•161.     in order to have  the  0 = the 0. 
202.    And also am using R as 9 instead of a  7 

*230.    and it doesn't  seem as though I'm going to be able to carry more 
than  1  in any case. 

*282,     Of course,   it all has  to  satisfy the  fact  that  I have   10  letters 
for 10 numbers. 

*286.     I'm only two numbers  short,   aren't  I? 

FIGURE  12.    Types of Complex Utterances Analysed by the  Linguistic  Processor 
(The examples are  taken from the protocol of S3;   those marked 
with asterisks cannot  be  handled by the current   system.) 
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(a)  Knowledge State:   (EQ D SKGREATliR R 7)(EQ Cl 0) 

Determine 
Unknowns 

(EQ *L 5) 

(EQ *c 0) 

(GREATER R *D) 

O  (EQ D 5) 

:£>  (EQ Cl 0) 

^>  (GREATER R 7) 

(b)  Knowledge State:   (EQ D 5)(Eg Cl 0) 

Display: 

c6 c5 cA c3 c2 cl 

DONALD 

+ G    E    R    A    L    D 

ROBERT 

Determine 
Unknowns 

(PLUS A *L) 

(EQ T *D) 

^>     (PLUS A A) 

<>     (EQ T 0) 

FIGURE  14.     Examples of  Inferences  by Determine 
Unknowns  Mechanism 
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Initial or Given 
Knowledge State: (EQ D 5) (EQ C1 0) (EQ C7 0) (EQ G 4) (EQ C6 0) 

Operator Groups: (1). 
(2). 
(3). 
(4). 
(5). 
(6). 
(7). 
(8). 

(9). 

Operator 

(RECALL D) 
(RECALL C1) 
(PC 1) 
(AV L) 
(PC 2) 
(RECALL G) 
(RECALL C6) 
(PC 6) 
(AV L) 

Inputs Outputs 

(    ) (EQ D 5) 
(    ) (EQ C1 0) 

(EQ D 5) (EQ C1 0)                         (EQ C2 1) 
(    ) (EQ L 3) 

(EQ C2 1) (EQ L3) (EQ R 7) 
(    ) (EQ G 4) 
( ') (EQ C6 0) 

(EQ D 5) (EQ C6 0) (EQ G 4)       (EQ R 9) 
(    ) (EQ L 2) 

Problem Behavior 

Graph 1-7. 

1 2 

C1-0    D~5      C2-1 
C1 -0 

C6-0 

1-9. 

C6 - 0    D - 5    R - 9 
C6 -0 
G-4 

Figure 16. Example of PBG Generation 
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S  V.  M A  N T  I  C       ELEMENTS 

KNOWLEDGE MEANING OPERATORS MEANING 

(LETTER   I) 

(DIGIT  d) 

(VIS   u) 

(IN  V J) 

(EVEN  V) 

(ODD  «) 

(EQ  v d) 

(PEQ  v d) 

(GREATER v d) 

(SMALLER i> d) 

(GIN d aoi) 

(GOUT d ool) 

An occurrence of 
the letter I 

An occurrence of 
the digit d 

u  1? added to 
something 

w is in column d 

V is even 

V Is odd 

V equals d 

One possible value 
for v  is d 

v  is greater than J 

y is smaller than ,1 

The carry into column 
aol  is d 

The carry out of 
column ool   is d 

f must equal either ■/. or J, (MEQ V dj  dg)* 

(NEQ [' <{)* V   is  not equal to d 

(AEQ V d)* 

(COND .:• ej* 
l       a 

V   is  assumed to have 
the value d 

If c j  is true then 

is true 

(EC v) Find a column 
containing y 

(NUM   t ,1 ) the  number of 
V*  is  d 

C.'U'.S   «7  «„) «is  added  to  un 

(EQC   (fLUS  Uj  u.Jup    Uj   plus  M    equals  w, 

(COUNT   O Count  the  number    of   I's 

(RECALL v) Recall  the value 
oi v 

(PC d)* Process column d 

(GN  l)* Generate possible 
values  for  i 

(IG a)* Ignore the carry c 

(AV y)* Assign some value 
to V 

(FA c)* Find  the antecedent 
of clement e 

(FN e)* Find  the negative of  the 
antecedent of c 

(TD v d)1' Test  if v can be 
equal to    d 

(TE e) Test  if e can 
be  true 

INDICATORS 

(OR) 

(IK) 

(AND) 

(YES) 

(NEC) 

(gUES) 

(TIEN) 

(BECAUSE) 

(UNLESS) 

(ASSUfE) 

(DIFFICULT) 

(THEREFORE) 

(CORRECTION) 

(INSTEADOF) 

These  elements  are  generated  by  the  Semantic   Processor  rather  than the  Linguistic   Processor. 

TABLE   1.     Examples of  Semantic  Elements Used  in  PAS-I 
(/   represents an arbitrary  letter,   d a  digit, 
t' a  carry,   '•  a   letter or carry,   K a   letter, 
carry,   or  digit,   i! a knowledge  element,   and 
jol  an  element   such as  (PLUS A A) which 
indicates a  column.) 
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KNOWLIiDGK  r.LKMP.NTS OI'liKATORS 

m I'C,  GN, IG,   FA,  Tl),   TE,  AV 

i'L'g I'C,   ON, FA 

HEQ PC,   GN, I'A 

mq FN,   T«, TE,   I'C 

AEQ FA,  AV 

EVEN I'C,   FA, TU,   TE 

ODO PC,   FA, TIJ,   TE 

GREATER I'C,   FA, TE 

SMALLER PC,   FA, TE 

TABLE  2.     Knowledge Elements and Operators 
for Generating Them 

Inputs Operator Outputs 

1. (Eg Cl 0)(EQ Ü   5) (PC   1) (eg T 0)(Eg C2 1) 

2. (EQ c: i) (PC  2) (ODD R) 

3. (EQ Ü  5)(ODD  R) (PC  6) (EVEN G) 

4, (EQ C2   1)(EQ  L  1) (PC  2) (Eg R 3) 

5, (EQ D   5) (I'C 6) (GREATER R  5) 

6. (   ) (PC  5) (PEg E   9) (Eg C6   I 

c6 c5 c4 c3 c2 cl 

DONALD 

Task: + G    E     R    A    L    D 

ROBERT 

TABLE  3.     Input/Output  examples  lor  PC of S3 
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TOl'IC SEGMENTS 

Knowledge 

6. [EACH D   IS   5   .   ] 

12. [BUT I   HAVE ANOTHER D   .   ] 

21. [OF COURSE  I   'M CARRYING UH  1   .   ] 

22. [WHICH WILL. MEAN THAT R  HAS  TO  »E AN ODD  NUMUER   .   ] 

3 5. [G   HAS TO  BE AN EVEN NUMBER  .   ] 

96. [R COULD  BE   9 ALSO   .   "J 

118. [THEN AGAIN  ,  THAT   'S ASSUMING THAT N  IS   LESS  THAN 3 ,   ] 

135. [BUT A CAN N'T EQUAL  5  .   ] 

201. [AND ALSO AM USING R AS  9 INSTEAD OF  7   .   J 

213. [AND R  HAS TO  BE  GREATER THAN  5  .   ] 

SEMAtfTIC ELEMENTS 

EQ 

IN 

EQ 

ODD 

EVEN 

PEQ 

SMALLER 

NEQ 

AEQ 

GREATER 

Operators 

10. [NOW  ,   DO  I   HAVE ANY OTHER T  'S  ? 

15. [AND  2  L  'S   J 

130. [A  + A   —   ] 

151. [SUPPOSE  0  WERE   I   ] 

200. 
201. 

OF COURSE NOW MY I'. CAN N'T BE A 9 , J 
SINCE I 'VE USED THE 9 FOR K . I 

FC 

PC 

PC 

AV 

TD 

TABLE   4.     Topic  Segments   for   Induction of   Problem Space 


